non-abelian, soluble, monomial
Aliases: C24⋊D15, C24⋊C5⋊S3, C3⋊(C24⋊D5), (C23×C6)⋊2D5, (C3×C24⋊C5)⋊1C2, SmallGroup(480,1195)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C24 — C3×C24⋊C5 — C24⋊D15 |
C1 — C24 — C24⋊C5 — C3×C24⋊C5 — C24⋊D15 |
C3×C24⋊C5 — C24⋊D15 |
Subgroups: 1016 in 86 conjugacy classes, 7 normal (all characteristic)
C1, C2 [×4], C3, C4 [×3], C22 [×10], C5, S3, C6 [×3], C2×C4 [×3], D4 [×6], C23 [×4], D5, Dic3 [×3], D6 [×3], C2×C6 [×7], C15, C22⋊C4 [×3], C2×D4 [×3], C24, C2×Dic3 [×3], C3⋊D4 [×6], C22×S3, C22×C6 [×3], D15, C22≀C2, C6.D4 [×3], C2×C3⋊D4 [×3], C23×C6, C24⋊C5, C24⋊4S3, C24⋊D5, C3×C24⋊C5, C24⋊D15
Quotients:
C1, C2, S3, D5, D15, C24⋊D5, C24⋊D15
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=e15=f2=1, eae-1=ab=ba, faf=ac=ca, ad=da, ebe-1=fbf=bc=cb, bd=db, ece-1=cd=dc, cf=fc, ede-1=a, fdf=abcd, fef=e-1 >
(3 30)(5 17)(8 20)(10 22)(13 25)(15 27)
(2 29)(3 30)(4 16)(5 17)(7 19)(8 20)(9 21)(10 22)(12 24)(13 25)(14 26)(15 27)
(1 28)(5 17)(6 18)(10 22)(11 23)(15 27)
(1 28)(4 16)(6 18)(9 21)(11 23)(14 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 20)(9 19)(10 18)(11 17)(12 16)(13 30)(14 29)(15 28)
G:=sub<Sym(30)| (3,30)(5,17)(8,20)(10,22)(13,25)(15,27), (2,29)(3,30)(4,16)(5,17)(7,19)(8,20)(9,21)(10,22)(12,24)(13,25)(14,26)(15,27), (1,28)(5,17)(6,18)(10,22)(11,23)(15,27), (1,28)(4,16)(6,18)(9,21)(11,23)(14,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,30)(14,29)(15,28)>;
G:=Group( (3,30)(5,17)(8,20)(10,22)(13,25)(15,27), (2,29)(3,30)(4,16)(5,17)(7,19)(8,20)(9,21)(10,22)(12,24)(13,25)(14,26)(15,27), (1,28)(5,17)(6,18)(10,22)(11,23)(15,27), (1,28)(4,16)(6,18)(9,21)(11,23)(14,26), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,30)(14,29)(15,28) );
G=PermutationGroup([(3,30),(5,17),(8,20),(10,22),(13,25),(15,27)], [(2,29),(3,30),(4,16),(5,17),(7,19),(8,20),(9,21),(10,22),(12,24),(13,25),(14,26),(15,27)], [(1,28),(5,17),(6,18),(10,22),(11,23),(15,27)], [(1,28),(4,16),(6,18),(9,21),(11,23),(14,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,20),(9,19),(10,18),(11,17),(12,16),(13,30),(14,29),(15,28)])
G:=TransitiveGroup(30,106);
(3 27)(5 29)(8 17)(10 19)(13 22)(15 24)
(2 26)(3 27)(4 28)(5 29)(7 16)(8 17)(9 18)(10 19)(12 21)(13 22)(14 23)(15 24)
(1 25)(5 29)(6 30)(10 19)(11 20)(15 24)
(1 25)(4 28)(6 30)(9 18)(11 20)(14 23)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 18)(19 30)(20 29)(21 28)(22 27)(23 26)(24 25)
G:=sub<Sym(30)| (3,27)(5,29)(8,17)(10,19)(13,22)(15,24), (2,26)(3,27)(4,28)(5,29)(7,16)(8,17)(9,18)(10,19)(12,21)(13,22)(14,23)(15,24), (1,25)(5,29)(6,30)(10,19)(11,20)(15,24), (1,25)(4,28)(6,30)(9,18)(11,20)(14,23), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,18)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25)>;
G:=Group( (3,27)(5,29)(8,17)(10,19)(13,22)(15,24), (2,26)(3,27)(4,28)(5,29)(7,16)(8,17)(9,18)(10,19)(12,21)(13,22)(14,23)(15,24), (1,25)(5,29)(6,30)(10,19)(11,20)(15,24), (1,25)(4,28)(6,30)(9,18)(11,20)(14,23), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,18)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25) );
G=PermutationGroup([(3,27),(5,29),(8,17),(10,19),(13,22),(15,24)], [(2,26),(3,27),(4,28),(5,29),(7,16),(8,17),(9,18),(10,19),(12,21),(13,22),(14,23),(15,24)], [(1,25),(5,29),(6,30),(10,19),(11,20),(15,24)], [(1,25),(4,28),(6,30),(9,18),(11,20),(14,23)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,18),(19,30),(20,29),(21,28),(22,27),(23,26),(24,25)])
G:=TransitiveGroup(30,119);
Matrix representation ►G ⊆ GL7(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 60 |
23 | 14 | 0 | 0 | 0 | 0 | 0 |
39 | 45 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
60 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(7,GF(61))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60],[23,39,0,0,0,0,0,14,45,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0],[60,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0] >;
Character table of C24⋊D15
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 5A | 5B | 6A | 6B | 6C | 15A | 15B | 15C | 15D | |
size | 1 | 5 | 5 | 5 | 60 | 2 | 60 | 60 | 60 | 32 | 32 | 10 | 10 | 10 | 32 | 32 | 32 | 32 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ5 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1 | -1 | -1 | -ζ32ζ54+ζ32ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ3ζ54+ζ3ζ5-ζ54 | orthogonal lifted from D15 |
ρ7 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1 | -1 | -1 | -ζ3ζ53+ζ3ζ52-ζ53 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ54+ζ3ζ5-ζ54 | ζ3ζ53-ζ3ζ52-ζ52 | orthogonal lifted from D15 |
ρ8 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1 | -1 | -1 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ32ζ54+ζ32ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | orthogonal lifted from D15 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -1 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1 | -1 | -1 | -ζ3ζ54+ζ3ζ5-ζ54 | -ζ3ζ53+ζ3ζ52-ζ53 | ζ3ζ53-ζ3ζ52-ζ52 | -ζ32ζ54+ζ32ζ5-ζ54 | orthogonal lifted from D15 |
ρ10 | 5 | 1 | -3 | 1 | -1 | 5 | -1 | 1 | 1 | 0 | 0 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ11 | 5 | 1 | -3 | 1 | 1 | 5 | 1 | -1 | -1 | 0 | 0 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ12 | 5 | 1 | 1 | -3 | 1 | 5 | -1 | -1 | 1 | 0 | 0 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ13 | 5 | 1 | 1 | -3 | -1 | 5 | 1 | 1 | -1 | 0 | 0 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ14 | 5 | -3 | 1 | 1 | 1 | 5 | -1 | 1 | -1 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ15 | 5 | -3 | 1 | 1 | -1 | 5 | 1 | -1 | 1 | 0 | 0 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊D5 |
ρ16 | 10 | 2 | 2 | -6 | 0 | -5 | 0 | 0 | 0 | 0 | 0 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ17 | 10 | -6 | 2 | 2 | 0 | -5 | 0 | 0 | 0 | 0 | 0 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ18 | 10 | 2 | -6 | 2 | 0 | -5 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 3 | 0 | 0 | 0 | 0 | orthogonal faithful |
In GAP, Magma, Sage, TeX
C_2^4\rtimes D_{15}
% in TeX
G:=Group("C2^4:D15");
// GroupNames label
G:=SmallGroup(480,1195);
// by ID
G=gap.SmallGroup(480,1195);
# by ID
G:=PCGroup([7,-2,-3,-5,-2,2,2,2,57,506,2523,717,1768,13865,2749,7356,755]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^15=f^2=1,e*a*e^-1=a*b=b*a,f*a*f=a*c=c*a,a*d=d*a,e*b*e^-1=f*b*f=b*c=c*b,b*d=d*b,e*c*e^-1=c*d=d*c,c*f=f*c,e*d*e^-1=a,f*d*f=a*b*c*d,f*e*f=e^-1>;
// generators/relations